您的位置首页 >企业 >

研究人员已经利用人工智能来缩短电池的测试时间

导读 给大家分享一篇关于 和手机的文章。相信很多朋友对 和手机还是不太了解,所以边肖也在网上搜集了一些关于手机和 的相关知识

给大家分享一篇关于 和手机的文章。相信很多朋友对 和手机还是不太了解,所以边肖也在网上搜集了一些关于手机和 的相关知识与大家分享。希望大家看完之后会喜欢。

电池性能会影响电动汽车的体验,包括续航里程、充电时间和车辆寿命。研究人员报告说,现在,人工智能已经实现了通过在加油站停车为电动汽车充电的梦想。它还可以帮助改进电池技术的其他方面。

几十年来,评价时间已经成为电动汽车发展的主要瓶颈。在电池开发过程的每个阶段,研究人员都必须对新技术进行数月甚至数年的测试,以确定它们能持续多久。

但是现在,研究人员已经开发了一种基于机器学习的方法,可以将测试时间减少98%。尽管该团队根据电池充电速度测试了他们的方法,但他们表示,该方法可以应用于电池开发过程的许多其他部分,甚至非能源技术。

斯坦福大学计算机科学助理教授Stefano Ermon说:“在电池测试中,你必须尝试很多东西,因为获得的性能会发生巨大变化。”材料副教授威廉楚是科学与工程的带头人。“有了AI,我们可以快速找到最有前途的方法,并消除许多不必要的实验。”

试错电池测试

《自然》杂志的研究目标是寻找10分钟内给EV电池充电的最佳方式,从而最大化电池的整体使用寿命。研究人员已经编写了一个程序,可以仅根据几个充电周期来预测电池对不同充电方法的反应。该软件还可以实时确定关注或忽略哪些计费方法。

减少了实验的时间和次数,使研究人员可以将测试过程从近两年缩短到16天。

"机器学习是反复试验,但方式更明智."

彼得阿提亚说:“我们想出了如何大大加快超快充电的测试过程。“然而,真正令人兴奋的是方法。我们可以将这种方法应用于许多其他可能阻碍电池发展数月或数年的问题。”

设计超快充电电池是一个重大挑战,主要是因为很难让它们一直使用。更快的充电强度会给电池带来更大的压力,通常会导致电池过早失效。为了防止构成电动汽车总成本很大一部分的电池组损坏,电池工程师必须测试一系列详细的充电方法,以找到最合适的充电方法。

新的研究试图优化这一过程。从一开始,该团队就发现快速充电优化需要多次试错测试——这对人类来说效率不高,但对机器来说是完美的。

“机器学习是反复试验,但以更明智的方式,”计算机科学研究生Aditya Grover说,他也是这项研究的共同领导者。“在决定何时探索(尝试新的和不同的方法)以及何时开发或投资最有前途的方法方面,计算机比我们强得多。”

机器和人类

该团队在两个关键方面利用了这一优势。首先,他们用它来减少每个循环实验的时间。在之前的研究中,研究人员发现,与其给每个电池充电并一直充电到电池出现故障(这是测试电池寿命的常用方法),不如预测电池只有在前100个充电周期后才能使用多长时间。这是因为机器学习系统只有在研究人员用几个失效的电池训练机器学习系统后,才能在早期数据中找到模式,而这些模式预测了电池可以使用多长时间。

本文就为大家讲解到这里了。

标签:

免责声明:本文由用户上传,如有侵权请联系删除!
Baidu
map